
Using Mac F2C With THINK C/C++ for 68K

Before you can use the code produced by Mac F2C, you must set up and build all
of the required support libraries. There are also special rules that must be
followed when using code produced by Mac F2C. The process and rules are
slightly different for each compiler. These instructions are for setting up Mac F2C
for use with THINK C/C++ for 68K. Refer to other chapters for instructions on
how to set things up for use with Symantec C/C++ for PPC or Metrowerk’s
CodeWarrior C/C++ compilers.

Users upgrading from earlier versions need to re-install all libraries, project files,
and supporting files. All files, including library source code, have been updated in
version 1.3.

Important Changes for Users Upgrading

• Do not place the source code to the Mac F2C Libraries in the folder containing
the THINK Project Manager application or in any of it’s sub-folders). There are
name conflicts between the files in libI77/libF77 and some of the new universal
header files and PPC support files. This means you must build the F2C libraries
first and then copy the built libraries into the THINK Project Manager tree.

• To accomodate PPC versions, the THINK libraries libI77a, libI77b, and libF77
have been renamed libI77a 68K, libI77b    68K, and libF77 68. You may either
modify your existing projects or simply rename these libraries to their old names
after you have built them.

All of the THINK project files shipped with Mac F2C are for the THINK Project
Manger (TPM) version 7.0.5 (the version that ships with Symantec C/C++ Version
8, Release 4).

If you are using THINK v7.0.4 (the latest version you can update to for free), you can find 7.0.4 versions of all the
project files and stationary files in the folder TPM 7.0.4 Project Files (located in the TPM Support folder).
Simply replace all the project files and stationary files referred to in these instructions with the corresponding files
of the same name from the TPM 7.0.4 Project Files folder.

If you have THINK v6 or an earlier v7, use the free updaters provided by Symantec to bring your copy of THINK
up to v7.0.4.

If you are using a version of THINK older than v7, please refer to the additional instructions in the chapter “THINK
pre-v7 and Other Compilers”.

Setting Up Mac F2C Using the Installer

The easiest way to set up Mac F2C is to use the installer included with Mac F2C.
This installer will only work correctly if you have System 7.5 (or higher) and have
THINK v7. If you do not meet both of these requirements, please follow the
instructions for manual installation found in the following section. If you are
using an earlier version of THINK, please also refer to the additional instructions
in the chapter “THINK pre-v7 and Other Compilers”.

The installer is stand-alone AppleScript application called Mac F2C Installer. To
run the installer, simply double click on it, and answer the dialogs it presents. The
installer will do the following:

• Create a folder called Mac F2C Support within the folder containing the THINK
Project Manager.
• Copy the Mac F2C versions of the THINK standard libraries.
• Build the appropriate Mac F2C libraries.
• Move the built libraries to the Mac F2C Support folder.
• Copy the Mac F2C project models to THINK’s (Project Models) folder.
• Translate and build the appropriate versions of the test application.

When the installer is finished, you will find completed test applications in the Test
Project ƒ folder. You should run these to verify correct operation of Mac F2C and
its libraries. After that, you are ready to go. To compile translated FORTRAN
code, simply open a new project in the THINK Project Manager, select the
appropriate version of Mac F2C project models, and add the translated files.

The remaining sections provide step-by-step instructions for installing Mac F2C
manually, a more detailed description of how to test your Mac F2C installation,
and additional information on using code generated by Mac F2C with THINK
Project Manager.

Setting Up Mac F2C Manually

All the files and folders you need are contained in the folder TPM Support (which
is located within the folder Symantec/THINK Support). Unless otherwise
indicated, all files and folders referred to in the following sections are located in
this folder. TPM refers to the THINK Project Manager.

Step 1: Bring all the libraries up-to-date

The Mac F2C libraries come without binaries, so you have to build them according
to the following algorithm:

FOR the project files:
      (1) libI77a 68K          (in Mac F2C Libraries folder)
      (2) libI77b 68K          (in Mac F2C Libraries folder)
      (3) libF77 68K            (in Mac F2C Libraries folder)
REPEAT the following steps:
 (a) Double-click on the project file.
 (b) In the THINK Project Manager’s Source menu,
 select the Make command.
 (c) Uncheck the Quick Scan check-box.
 (d) Click on the Use Disk button.
 (e) Click on the Make button.
END FOR-REPEAT

Step 2: Move things to the recommended locations

For easiest and smoothest operation, files should be installed as follows:

• The folder For 'Standard Libraries' contains four TPM project files: ANSI
F2C, unix F2C, IOStreams F2C, and CPlusLib F2C. Drag these files (not the
folder itself) to the Standard Libraries folder located in the same folder as the
TPM application. If you don’t have the THINK C++ compiler (or you don’t plan
to use Mac F2C with it) you do not need IOStreams F2C or CPlusLib F2C.

• Create a folder called Mac F2C Support inside the folder within the folder that
contains the THINK Project Manager (TPM) application.

• Drag the three TPM project files in the folder Mac F2C Libraries (libI77a 68K,
libI77b 68K, and libF77 68K; the same ones you brought up-to-date in Step 2
above) to the Mac F2C Support folder which you just created.

WARNING: Do not place the source code for these libraries (found in the folders
libF77 Sources and libI77 Sources) in the folder containing the THINK Project
Manager application or in any of it’s sub-folders). The source code for these
libraries has name conflicts with Apple’s Universal Headers (e.g., a file called fp.h
appears in both but the two are NOT equivalent files). Otherwise any of your

code that #includes any of the conflicted files may inadvertently access the wrong
file.

• The folder For '(Project Models)' (located one level up in the TPM Support
Folder) contains two model project folders called TPM Mac F2C C Project and
TPM Mac F2C C++ Project. Drag both folders to the (Project Models) folder
located in the same folder as the TPM (if you don’t have THINK C++ or don’t plan
to use Mac F2C with the C++ compiler, you don’t need the TPM Mac F2C C++
Project folder).

Verifying Correct Operation of Mac F2C

The folder Test Project ƒ contains the following files:

test.f -- a sample FORTRAN program.

F2Cmain.c -- the main program required to run programs produced by Mac F2C.

F2Cmain.cp -- the main program required to run programs produced by Mac
F2C.

f2c.h -- an include file required to compile programs produced by Mac F2C.

test.c (Output) -- what you should get when you translate the sample FORTRAN
code files.

Test.68K.π -- a TPM v7.0.4 project to run the sample C program.

test.c (C++ Output) -- what you should get when you translate
the sample FORTRAN code files and select the C++ output option.

Test++.68K.π -- a TPM v7.0.4 project to run the sample C++ program.

Test.PPC.π and Test++.PPC.π -- SPM v8.0.1 project files to run the sample
program.

Test++.*.µ -- CodeWarrior project files to run the sample program.

Translate the sample FORTRAN program Test.f simply by dragging it onto Mac
F2C. Do not change any of the options (use Factory Defaults). Once you have

done this you can compare it with Test.c (C Output) file to verify that you got the
same thing. If so, double click on the TPM project Test.68K.π and run it to verify
correct operation.

If you also plan to use Mac F2C C++ output with the Codewarrior, you can run a
second test to verify correct operation with the C++ compiler. Start Mac F2C and
in the C Options dialog, select C++ code. Do not change any of the other
options. Translate Test.f. Compare it with Test.cp (C++ Output) to verify that
you got the same thing. If so, double click on the CPM project Test++.68K.π and
run it to verify correct operation.

Using C Code Generated by Mac F2C

The C code produced by Mac F2C has the following compile and link
requirements when using THINK to generate code for the 68K:

 • the header file:
 f2c.h
 • the F2C libraries:

libI77a 68K
 libI77b 68K

libF77 68K
 • the THINK libraries:

                ANSI F2C
                unix F2C
 • for C++ code only, the THINK libraries:
                IOStreams F2C
                CPlusLib F2C
 • 4-byte integers (C only)
 • 8-byte doubles
 • Native Floating-Point Format
 • Far Code
 • Far Data
 • C++ ANSI Conformance unchecked (C++ only)

In addition, if you compile a stand-alone FORTRAN program (instead of only
some FORTRAN subroutines) you must include F2Cmain.c in your project (or
F2Cmain.cp if you use C++; the two files are identical). This is because the
original main routine in the FORTRAN program becomes a function that is called
by F2Cmain.c. In addition, F2Cmain.c performs a series of initializations
(primarily related to error catching) prior to executing the main FORTRAN
program.

The model project provided (TPM Mac F2C C Project) is a folder that contains
everything you need to compile and run code produced by Mac F2C using the C
compiler. This folder has a copy of F2Cmain.c, f2c.h, and a project file that
includes the appropriate libraries and option settings.

The C++ model project (TPM Mac F2C C++ Project) is a folder that contains
everything you need to compile and run code produced by Mac F2C using the C++
compiler. This folder has a copy of F2Cmain.cp, f2c.h, and a project file that
includes the appropriate libraries and option settings.

If you have THINK C version 7.0 or better, simply create a new project by using
the New Project command in the THINK Project Manager’s File menu and
selecting TPM Mac F2C C Project or TPM Mac F2C C++ Project as the model for
the new project. Add your code files as appropriate, bring it up-to-date (you may
need to use the Make command and the Use Disk option the first time), and run.

If you have an earlier version of THINK C, first replace the project file
provided in Mac F2C C Project with one made with your version of THINK (I
have included a list of the project contents for your convenience—see the
additional instructions in the chapter “THINK pre-v7 and Other Compilers” if you
have trouble doing this). Do not include any objects at this time. To start a new

project, duplicate the entire Mac F2C C Project folder, change the names of files
and folders as appropriate, add your code files, and bring everything up-to-date.

If you compile a FORTRAN subroutine or function that you want to call from a C
program, look at the output C code to see the appropriate calling protocol. You
may or may not need to include the F2C support libraries (libF77 68K, libI77a
68K, and libI77b 68K). In rare cases, you may also need to copy some of the
initialization code from F2Cmain.c to your calling program.

Special 68K Considerations

Please read the following section carefully if you intend to use Mac F2C with the
THINK compiler generating 68K code:

As noted above, code produced by Mac F2C MUST be compiled with 4-byte
integers. This requirement cannot be relaxed. The other requirements (8-byte
doubles, native floating-point format, far code, and far data) can sometimes be
relaxed:

IF you do not use doubles in any situation where their size relative to reals matters
(e.g., if you do not use doubles in equivalence and common statements), then your
code probably does not require 8-byte doubles. You need to verify this on a
case-by-case basis.

This requirement exists because Mac F2C follows FORTRAN sizing rules when
compiling FORTRAN code: sizeof(real) == sizeof(integer) and sizeof(double) ==
2*sizeof(real). FORTRAN real is compiled as C float and FORTRAN double as
C double, so doubles have to be 8-bytes long for equivalence and common
statements to be properly aligned. There are a few other cases where the size of
double variables matters; see AT&T Computing Science Technical Report No.
149 (included with Mac F2C) for a detailed discussion.

IF you compile your program with the option Local variables are automatic and
you do not have large static data structures, you might not need Far Data. You
need to verify this on a case-by-case basis.

Mac F2C creates large static data structures for I/O. If you create local variables
in the global area (static instead of automatic) or if you have other static data, you
will almost certainly require Far Data. The I/O data structures can be large
enough that you may require Far Data for that reason alone.

IF your program is not very large and doesn’t have a large number of subroutines,
you probably will not need Far Code. You need to verify this on a case-by-case
basis.

Mac F2C tends to produced redundant copies of utility code (especially code for
performing array indexing). It can also produce large numbers of auxiliary
functions. The result is that Far Code is often required. Compile first with Far
Code, then check the code size and jump table to see if you can relax this
requirement.

IF your program will not be compiled under THINK C++ (i.e., you chose K&R C
or ANSI C output instead of C++ output) and you will not link with code
produced by THINK C++, you do not need native floating-point format. The
native floating-point format option is selected only to guarantee compatibility with
the THINK C++ compiler should you chose to use the output of Mac F2C with C+
+ code.

If you change the 8-byte doubles, native floating-point format, Far Code, or Far
Data options, remember to also change them in all the libraries, specifically
libI77a 68K, libI77b 68K, libF77 68K, ANSI F2C, unix F2C, IOStreams F2C, and
CPlusLib F2C (the latter two for C++ only).

I urge all users to read the enclosed AT&T Computing Science Technical Report
No. 149. Consider it your compiler and language reference manual.

